A matrix is a rectangular array of numbers.
The size of a matrix is written

Ex:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
3 & 4 & 0 & 1 \\
-1 & 2 & 3 & 4 \\
0 & 3 & 9 & 1
\end{array}\right] . \quad A \text { has } 3 \text { rows } A=[E] \\
& \text { and } 4 \text { columns } A=[|| | 1] .
\end{aligned}
$$

S. A is a 3×4 matrix.

These are the rows of $A:\left[\begin{array}{llll}3 & 4 & 0 & 1\end{array}\right],\left[\begin{array}{llll}-1 & 2 & 3 & 4\end{array}\right],\left[\begin{array}{llll}0 & 3 & 9 & 1\end{array}\right]$
These are the columns of $A:\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 9\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right]$.
observe The rows of A are vectors in \mathbb{R}^{4} the columns of A are vectors in \mathbb{R}^{3}.

In general the rows of on $m \times n$ matrix are vectors in \mathbb{R}^{n} and the columns we vectors in \mathbb{R}^{n}.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another row. ${ }^{2}$
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 5 \\ 1 & 2 & 3\end{array}\right]$.

> Ex a replacement $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 5 \\ 1 & 2 & 3\end{array}\right] R 3 \rightarrow(-1) R 1+R 3$ Ex ar interchmpe $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 5 \\ 0 & 1 & 2\end{array}\right]$.

Ex a scaling

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 5
\end{array}\right] R 3 \rightarrow \frac{1}{5} R 3\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

DEFINITION A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):
4. The leading entry in each nonzero row is 1 .
5. Each leading 1 is the only nonzero entry in its column.

A matrix in echelon form looks like:

$$
\left[\begin{array}{llll}
\mathbf{n} & * & * & * \\
0 & * & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{llllllllll}
0 & \boxed{0} & * & * & * & * & * & * & * & * \\
0 & 0 & 0 & 1 & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & *
\end{array}\right] \quad \text { where } \quad * \quad \text { nun -zero number }
$$

A matrix in reduced row echelon form or ref looks like
$\left[\begin{array}{llll}1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llllllllll}0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & *\end{array}\right]$

Note ref of a matrix
is unique

The left-most non-zero entry in a each row of a matrix in echelon or ref is called a pivot position.

The number of leading 1's / pivot positions is called the rank of A.

Let A be a $M \times n$ matrix. Let $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be vector in \mathbb{R}^{n}. Two ways to compute $A \vec{x}$.

Method 1 - the row method

$$
\begin{gathered}
A \\
{\left[\begin{array}{c}
-\operatorname{row} 1- \\
-\operatorname{row} 2- \\
\vdots \\
-\operatorname{rowm}-
\end{array}\right]} \\
\underset{n \times n}{\left[\begin{array}{c}
x \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]}
\end{gathered} \begin{gathered}
A \vec{x} \\
n \times 1
\end{gathered} \underset{m \times 1}{\left[\begin{array}{c}
\operatorname{row} 1 \cdot \vec{x} \\
\operatorname{row} 2 \cdot \vec{x} \\
\vdots \\
\operatorname{row} m \cdot \vec{x}
\end{array}\right]}
$$

where row: \vec{x} is the dot product

Method 2 -the column method

$$
\begin{aligned}
& \begin{array}{c}
A \\
{\left[\begin{array}{cccc}
1 & 1 & & 1 \\
\operatorname{col} 1 & c_{01} l & \cdots & c_{0} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
\vec{x} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}\left[\begin{array}{c}
1 \\
c_{01} 1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
c_{01} \\
1
\end{array}\right]+\ldots+x_{n}\left[\begin{array}{c}
1 \\
c_{0} 1 \\
1
\end{array}\right]}
\end{array} \\
& m \times n n \times 1 \quad m \times 1
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {ethod I: }} \text { A } \vec{x}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 3+2 \cdot(-1)+3 \cdot 2 \\
4 \cdot 3+5 \cdot(-1)+6 \cdot 2
\end{array}\right]=\left[\begin{array}{c}
7 \\
19
\end{array}\right] \\
& M_{\text {ethod II: } A \vec{x}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]}=3\left[\begin{array}{c}
1 \\
4
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
5
\end{array}\right]+2\left[\begin{array}{l}
3 \\
6
\end{array}\right] \\
&=\left[\begin{array}{c}
3 \\
12
\end{array}\right]+\left[\begin{array}{c}
-2 \\
-5
\end{array}\right]+\left[\begin{array}{c}
6 \\
12
\end{array}\right]=\left[\begin{array}{c}
7 \\
19
\end{array}\right]
\end{aligned}
$$

Method I and II give the same result.

Method I and II give the same result.
Method I shows that if \vec{x} satisfies $A \vec{x}=\overrightarrow{0}$, then \vec{x} is orthogonal to the rows of A.

Method II shows that $A \vec{x}$ is a linear combination of columns of A.

Let A be $m \times n$ matrix. For $\vec{x} \in \mathbb{R}^{n}$ we get that

$$
\underset{m \times n}{A} \vec{x}=\underset{m \times 1}{A_{m \times 1}}
$$

So the action of multiplying A by $x \in \mathbb{R}^{n}$ results in a vector $A x \in \mathbb{R}^{n}$.
So A is a function from $\underbrace{\mathbb{R}^{n}}_{\text {domain }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {co-domann }}$
The range of A is the set of all linear combinations of the columns of $\left.A=c_{0}\right)(A)$.

$$
\left\{A \vec{x} \mid \text { for } n \| \vec{x} \in \mathbb{R}^{n}\right\}=\text { Span of colum }=\operatorname{col}(A) \text {. }
$$

Question: What is the dimension of col (A)? When will col (A) equal all of R^{m} ?
Answer: The size of $\operatorname{col}(A)$ is equal to $\operatorname{rank}(A)$ or the number of pivots in an echelon form of A. $\operatorname{col}(A)$ equals R^{m} when $\operatorname{rank}(A)=m$.

Let A be a $m \times n$ matrix. Then the following are subspaces determined by A.

Column Space The column space of a matrix is the span of its columns.

$$
\left.\left.\left.\begin{array}{rl}
\text { Write } A=[\underbrace{v_{1} \cdots v_{n}}_{\text {colums of } A}] . ~ T h e n ~ & \operatorname{col}(A)
\end{array}\right)=\operatorname{span}\left\{v_{1}, \ldots, v_{1}\right\}, 1 c_{i} \in \mathbb{R}\right\}\right\}
$$

A basis of col (A) is found by identifying the pivot positions of an echelon form of A and selecting the corresponding columns from the original A.

Row space The row space of a matrix is the spar at its rows.

$$
\begin{aligned}
\text { Wite } A=\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{m}
\end{array}\right] . \text { Then } \operatorname{row}(A) & =\operatorname{span}\left\{r_{1} \ldots, r_{m}\right\} \\
& =\left\{c_{1} r_{1}+\cdots+c_{m} r_{m} \mid c_{i} \in \mathbb{R}\right\} \\
\operatorname{dim} \operatorname{row}(A) & =\operatorname{ram} K(A)
\end{aligned}
$$

A basis for row (A) is computed by selecting the nun-zero rows of an echel on form of A.

Null Space The null space of a matrix is the solution set to $A_{x}=\overrightarrow{0}$.

$$
\operatorname{dim} n u l(A)=n-\operatorname{rank}(A)
$$

A basis for nul(A) is found by decomposing the parametrized general solution x for $A_{x}=\overrightarrow{0}$.

Example The matrix $A=\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 0 & 1 & -2 & 3 \\ -1 & 0 & -3 & -2\end{array}\right]$ is row equivalent to $B=\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Find bases for $\operatorname{col}(A), \operatorname{row}(A)$, and $\cap u)(A)$.
Sol'n Since B is in ref and row equivalent to $A, B=\operatorname{rre} f(A)$,
$\operatorname{rref}(A)$ has pivots in columns 1,2 , so a basis for col (A) is columns 1,2 from A.
$\operatorname{rref}(A)$ has pivots in columns 1,2 , so a basis for $\operatorname{col}(A)$ is columns 1,2 from A.

$$
\begin{aligned}
& \rightarrow \text { basis for } \operatorname{col}(A)=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right\} \\
& \rightarrow \text { basis for } \operatorname{sow}(A)=\{\underbrace{\left.\left[\begin{array}{llll}
1 & 0 & 3 & 2
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & -2 & 3
\end{array}\right]\right\}}_{\text {the nun-zelo lows of } \operatorname{rref}(A)}
\end{aligned}
$$

\rightarrow basis For null)

$$
\begin{aligned}
& \begin{array}{l}
\text { basis Fur nul(A) } \\
\text { Solve } A_{x}=\overrightarrow{0} \text {. } \quad\left[\begin{array}{llll}
A & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{cccc:c}
1 & 2 & -1 & 4 & 0 \\
0 & 1 & -2 & 3 & 0 \\
-1 & 0 & -3 & -2 & 0
\end{array}\right]
\end{array} \\
& \downarrow \text { reef }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Row ai: } x_{1}=-3 x_{3}+2 x_{4} \\
& \text { Row ai: } x_{2}=2 x_{3}-3 x_{4} \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-3 x_{3}+2 x_{4} \\
2 x_{3}-3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-3 \\
0 \\
1
\end{array}\right], x_{31} x_{4} \in \mathbb{R} \\
& \text { basis for } \operatorname{nul}(A)
\end{aligned}
$$

Consider A, a man matrix.
rows of A are in $\mathbb{R}^{n} \quad$ Observe if $x \in \mathbb{R}^{n}$ then $A x \in \mathbb{R}^{n}$. columns of A are in \mathbb{R}^{M}.

So A gives a mapping i

Subspaces of \mathbb{R}^{*} i
row $A=$ span of row of A
nu $A=$ solution to $A \vec{x}=\overrightarrow{0}$
Every vector in row (A) is orthogonal to every vector in $\operatorname{nul}(\mathrm{A})$ and vice versa.

Dimensions

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{row} A)=\operatorname{rank}(A) \quad \operatorname{din}(\operatorname{col} A)=\operatorname{cank}(A) \\
& \operatorname{dim}(\operatorname{nu|} A)=n-\operatorname{rank}(A)
\end{aligned}
$$

Sob spaces of \mathbb{R}^{m} :
col $A=$ span of columns of A

Subspaces of R^1

Dim $=0$ subspaces of $R^{\wedge} 1$

$$
\cdot\{0\} \quad 2010
$$

Dim $=1$ subspaces of $R^{\wedge} 1$

$$
\begin{aligned}
& \text { - all of } \mathbb{R} \\
& \text { - basis is any non zero } \#
\end{aligned}
$$

Subspaces of R^2

Dim =0 subspaces of $R^{\wedge} 2$

- $\{\overrightarrow{0}\}$ ze10

Dim =1 subspaces of $R^{\wedge} 2$

- any line through the origin
- basis is any non zero vector in \mathbb{R}^{2}

Dim =2 subspaces of $R^{\wedge} 2$

- \mathbb{R}^{2}
- bass is any 2 ind pendent vector s in \mathbb{R}^{2}

Dim $=0$ subspaces of $R^{\wedge} 3$

- $\{\overrightarrow{0}\}$ ze10

Dim =1 subspaces of $R^{\wedge} 3$

- any line through the origin
- basis is any non zero vector in \mathbb{R}^{3}

Dim $=2$ subspaces of $R^{\wedge} 3$

- any plane through the origin
- bass is any 2 ind pendent vector S in \mathbb{R}^{3} Dim =3 subspaces of $R^{\wedge} 3$
- \mathbb{R}^{3}
- basis is any 3 independent vectors in \mathbb{R}^{3}
- $\{\overrightarrow{0}\} \quad$ zero

Dim $=q$ where $q=1,2, \ldots, n-1$ subspaces of $R^{\wedge} n$

- any q-Inyperplane through the origin
- busis is any q independent vectors in \mathbb{R}^{n}

Dim =n subspaces of $R^{\wedge} n$

- \mathbb{R}^{n}
- basis is any \cap independent vectors in \mathbb{R}^{n}

Note that:

(i) The span of any set of vectors is a subspace.
(ii) Any subspace is the span of some set of vectors (it has a basis).

So this is a comprehensive list all subspaces.

Let $V=M_{2,2}=$ vector space of 2×2 matrices.
What is the dimession of W, the subspace of symmetric 2×2 matrices?
Lot $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. A is symunetic if $A=A^{+}$.
So for $A \in W$ we need $A=A^{\top}$ or $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
\downarrow

$$
\begin{array}{ll}
a=a & b=c \\
j=d & c=b
\end{array}
$$

S. $A \in W$ looks like $A=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$
$W=\left\{a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+d\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right.$ for $\left.a, b, d \in \mathbb{R}\right\}$

Let $r_{1}=(1,2,3) \quad r_{2}=(4,5,6)$. And let $A=\left[\begin{array}{ll}r_{1} & r_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$.
Let $\vec{b}=(-1,1,3)$.
The following 3 questions are equivalent:
Question 1 Is \vec{b} a linear combination of v_{1} and v_{2} ?
Question 2 is $\vec{b} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{col}(A)$?
Question 3 Does the matrix equation $A \vec{x}=\vec{b}$ have a solution?
Answer Q3i $A_{\dot{x}}=\vec{b}$ looks like $:$

$$
\begin{gathered}
A \\
\vec{x} \\
{\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]}
\end{gathered}
$$

Solve for unknown \vec{x} by forming the augmented matrix and row reduce

$$
[A \vdots b]=\left[\begin{array}{cc:c}
x_{1} & x_{2} \\
1 & 4 & -1 \\
2 & 5 & 1 \\
3 & 6 & 3
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cc:c}
x_{1} & x_{2} \\
1 & 0 & 3 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution is

$$
x_{1}=3
$$

$$
x_{2}=-1 .
$$

Answer to Question 1,2,3:
Yes, $A_{\vec{x}}=\vec{b}$ has a solution i $\vec{x}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ works.
Yes., \vec{b} is a linear combination of v_{1}, v_{2} since

$$
\begin{aligned}
& 1^{x_{1}} 4^{x_{2}} \\
& 3 v_{1}+(-1)^{v_{2}}=\vec{b}
\end{aligned}
$$

which also shows $\vec{b} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.

Question 4

Using the sane v_{1}, v_{2} as above, is $\vec{c}=(1,1,3)$ in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$?
Solve augmented matrix

$$
[A: \vec{c}]=\left[\begin{array}{cc:c}
x_{1} & x_{2} \\
1 & 4 & 1 \\
2 & 5 & 1 \\
3 & 6 & 3
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{cc:c}
x_{1} & x_{2} & 0
\end{array}\right) 0
$$

No SOL'N!
If you ever see a row like $\overbrace{\left.\begin{array}{llll}0 & \cdots & 0 & *\end{array}\right]}^{L^{\text {non }}}$
while reducing an augmented matrix, then the system lias no solution. Answer to Question $4 \quad N_{0}, \vec{c}$ is not in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$.

We shoved this by showing $A \vec{x}=\vec{c}$ |has no solution,

Picture

Question

Since c is not in $W=\operatorname{col}(A)$, we can then ask: What is the vector in $\mathrm{W}=\operatorname{col}(\mathrm{A})$ closest to c ? That is the projection of c onto W .

Before projecting onto a 2-dimensional subspace we need to project onto a 1-dimesional line.

Projection onto a line

Consider $a, b \in \mathbb{R}^{n}$. The projection of b onto a is the vector in span \{n $\}$
closest to b. Denote this vector $\vec{p}^{\prime}=$ pro $_{a} b$.

Projection onto a plane

Before projection onto a plane, we need to find an orthogonal basis for the plane W and then use the theorem:

THEOREM 6.3.4 Let W be a finite-dimensional subspace of an inner product space V.
(a) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is an orthogonal basis for W, and \mathbf{u} is any vector in V, then

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{u}=\frac{\left\langle\mathbf{u}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\left\langle\mathbf{u}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{u}, \mathbf{v}_{r}\right\rangle}{\left\|\mathbf{v}_{r}\right\|^{2}} \mathbf{v}_{r} \tag{12}
\end{equation*}
$$

Our given vi and v2 are NOT orthogonal since their dot product is not zero. To create an orthogonal basis that spans W , use the Gram-Schmidt process.

Exercise: Use the Gram-Schmidt process and compute the projection of c onto W .

Gram-Schmidtprocedure transforms an independent set of vectors into an orthogonal set that spans the same space.

The Gram-Schmidt Process
Given a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. In addition
$\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \quad$ for $1 \leq k \leq p$

